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1 INTRODUCTION

1.1 Program Overview

The purpose of the FY92/93 effort’ was to investigate and, where appropriate, develop and de-
liver software tools to improve the productivity and quality of oceanographic data interpretation.
Specifically, this effort comprised three tasks:

» Task 1: Research and Develop Methods for Improving the Performance of Automated Outlier
Detection. Based on algorithms and software developed by SRI under a previous DMA pro-
gram,2 several enhancements were carried out.

* Task 2: implement, Document, and Deliver the Improved Outlier Detection Algorithms. Addi-
tional modifications were made to support generic multibeam format (GMF) data sets. The
upgraded software was delivered to the hydrographic and bathymetric groups at the Naval
Oceanographic Office (NAVOCEANOD) and NOAA, and will be delivered to the Defense

Mapping Agency (DMA) concurrent with this final report. These improvements are summa-
rized in Section 2.

» Task 3: Identify and Evaluate More Advanced Oceanographic Data Analysis Tools. A study
was made to determine the data automation needs of the oceanographic community, and
then compare these needs to data analysis tools already developed for other scientific
application areas. The survey of data automation needs was carried out with the assistance
of NAVOCEANO, DMA, and NOAA. QOur research indicated that a significant body of rele-
vant techniques has indeed been developed for applications such as robotics, image under-
standing, and various statistical analysis applications. A summary of our results was pre-
sented in our February 1993 technical research memorandum, “Oceanographic Data
Processing Feasibility Study” {1].

1.2 Background

In a previous (FY90/91) effort sponsored under the DMA Defense Hydrographic Initiative
(DHI), SRI was tasked to develop of a general-purpose outlier detection algorithm for use with
multibeam sonar systems. Depth outliers are a particularly common problem in deep-water multi-
beam sonar systems, and must be eliminated from the data prior to seafloor map production. The
time required to manually locate and remove outliers represents a significant portion of the overall
data production time and labor. Furthermore, missed outliers can lead to substantial errors in the
final map product.

The result of this earlier effort was the development and deployment of a software tool that
automates outlier recognition and deletion. Two diverse approaches to outlier detection were
developed: the Graduated Non-Convexity (GNC) algorithm, adapted from computer vision

1. 199293 contract managed by the Office of Naval Research, Contract N00014-92-C-0015.
2. 1990/91 contract also managed by the Office of Naval Research, Contract N0O0014-90-C-0132,
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applicatons: and the Robust Linear Prediction (RLP) algorithm, adapted from the field of digital
image restoration. Both algorithms were consoiidated in a single interactive software package that
included an interface to several bathymetry data formats, parameter controls, and graphic dis-

plays. Prototype software releases were delivered to the Naval Oceanographic Office
(NAVOCEANO), NOAA, and DMA.

The performance of this system was investigated in experiments on U.S. Navy SASS, Sea-
beam, and Krupp Atlas Hydrosweep bathymetry data sets. An extensive analysis was carried out
on a collection of representative SASS data sets by a NAVOCEANO/GBA team. In the NAV-
OCEANO experiment, the outliers located by the algorithms were compared with those identified
by experienced Navy bathymetrists. The automatic outlier detection system located 66% - 85% of
valid outliers (where the performuace varied somewhat depending on the nature of the test data
sets), with false-detection rates of less than 0.03% [2]. These results were considered encouraging
by the oceanographic community. The low false-detection rate is especially important, because
this loss rate is small in comparison to typical sonar data dropout rates and is believed not to ma-
terially alter the final bathymetry product. As a consequence of these results, NAVOCEANQO has
integrated the outlier detection algorithms into their bathymetric data production process.

These tests also identified high-priority performance improvements for the automated outlier
detection algorithms. Specific sugges.ions were made by groups in the oceanographic community
(as reported in Arnold and Shaw [2]), and these form the basis for the algorithm research and de-
velopment carried out under Task 1 of the current program. An additional requirement to support
NAVOCEANO hydrographic data production was recognized, and set forth as Task 2. Finally, a
requirement to automate other data interpretation tasks, as called for by the DHI program, is the
basis for the feasibility study carried out under Task 3.

1.3 Acknowledgments

As in our previous effort, SRI received technical assistance that proved to be absolutely essen-
tial to our work. We would like to thank the staff of NAVOCEANQ, and in particular Rich Sandy,
who took the time to tutor us in the special needs of bathymetric and hydrographic data produc-
tion; and Dr. Tom Davis, now of SAIC, for his highly relevant comments and continued support of
automation efforts.




2 TASK SUMMARIES

2.1 Task 1: Outlier Detection Algorithm Improvements

Two fundamentally different outlier detection algorithms were considered under this program.
The first technique, the graduated non-convexity (GNC) algorithm, reconstructs the ocean floor
surface based on a combination of the sonar depth estimates and constraints for surface smooth-
ness and discontinuity. Sonar sample points that significantly differ from the re-estimated surface
are identified as potential outliers. The second approach, the robust linear prediction (RLP) algo-
rithm, adaptively develops statistical model parameters from the data set. The expected depth of
each sample point is predicted from the values and statistics of the neighboring depth samples. If
the actual depth varies significantly from the predicted value, the sample is identified as an outlier
and the region is reviewed with the anomalous sample removed.

2.1.1 GNC Algorithm Improvements

The outlier detection properties of the GNC are a side effect of the algorithm’s ability to de-
velop a surface with discontinuities: the system has been adapted to recognize very small and
hence physically impossible discontinuities as outliers. The computer vision model, unfortu-
nately, does not accurately reflect the true characteristics of the ocean floor, which is typically a
continuous (albeit sometimes steep) surface that rarely coutains occlusions.

A second point is that the original (FY90/91) GNC algorithm was based on a first-order statis-
tical model for the seafloor. In a first-order model, the depth differences between adjacent points
on the seafloor are modeled as a zero-mean, Gaussian random process. Review of statistical
studies by Fox [3] indicated that this model is accurate in relatively flat seatloor regimes, but that
a second-order model is more appropriate in regions with strong topographic features (Figure 1).
This finding corroborates our 1991 experimental evidence that the first-order model had difficulty
in steeply sloped regions [2].

From the above, it was determined that the surface energy function used by the GNC should
be reformulated to
1. Emphasize singularities (outliers).
2. Incorporate a second-order energy model.
Background on GNC Algorithm. The GNC algorithm is a visible-surface reconstruction
technique originally developed for computer vision and three-dimensional mapping systems. In a

typical GNC application, such as the simple example of Figure 2, an active range-finder sensor
(sonar or an IR ranging device) develops a collection of range estimates over some viewable
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region of interest. After the sensor performs a scan, a potentially noisy discrete depth map 1s
created. The resulting visible surface consists of piecewise continuous regions formed by object
surfaces, with discontinuities (i.e., significant jumps in depth) at the object boundaries.

The GNC algorithm is used to estimate the object edge locations, as well as to reduce the
noise and thereby improve the shape and position estimates of object surfaces. A combination of
factors 1s used in the surface reconstruction process, including constraints for smoothness (e.g.,
prior knowledge on the shapes of potential objects), depth discontinuities, and reliabi'ity of the
measurement data. These competing criteria are quantified in terms of a surface energy function,
where the minimum-energy surface represents the most probable solution. The primary technical
contribution of the GNC algorithm is the nonlinear optimization procedure by which it locates the
minimum-energy configuration.

Surface Energy Models. GNC constains the estimated surface by applying simultaneous con-
straints for surface smoothness, continuity, and adherence to the raw sonar data. as quantified
through the function £ (u, d) :

E(u,d) = D(u,d) +S{u) +P(u N
where

D (u,d) measures adherence of the smoothed surface estimates to the data
S (u) 1s a surface smoothness function

P (u) 1sa surface and/or derivative discontinuity function.

The energy model used in the FY9(0/91 GNC implementation is based on a first-order, or
“weak membrane” model. The weak-membrane analogy is a thin rubber sheet that attempts to
minimize the vertical slope, but tears if stretched beyond some strength limit. The weak-mem-

brane energy function is calculated as a sum of energy contributions over the entire surface under-
going reconstruction:

E\(u,d) = Z ((ui,j—-d,"j)2+}.2(l —Li'j-) (uf+uf) +(xLi‘}.]
i,je S ‘ @

where

E| (u, d) is the first-order surface energy function

ij and d;  are discrete samples from the reconstructed surface and sonar measurement set,
respecuvely, ateach point {i, j} on the reconstructed surface, S

A is a first-order smoothness parameter.




« is the energy associated with surface discontinuities (analogous to the membrane
“strength™).

u, cid u, ure the x and y spatial first derivatives at each point {i, j} .

L. . is a discontinuity indicator, such that:

I
1 at discontinuines

Li T L0 elsewhere
The variable L; j enables surface discontinuities that are key to this application; at points
where L i = 1, the smoothness constraint is ighored and a fixed energy, o, is assigned. At all
other points, the smoothness energy, A2 (“f + uf ), is assessed. The relative value of the smooth-
ness parameter, A, and the discontinuity energy, «, determine the algorithm’s proclivity toward

discontinuities.

A second-order, or iin plate, model was developed under the 1992/93 effort. The second-
order approach provides surface-fitting behavior like that of a suff but deformable plate. As in-
ferred from the thin-plate analogy, this model favors surfrces with constant slopes, while resisting
strong surface curvature. The surface is allowed to break, however, causing discontinuities in the
surtace and its first derivative. The thin-plate-model energy function used in this effort” is given as

E,(ud) = 2 1(“i,j‘di,j)2+“4(1”Lf,j')(“ix“‘iy)+°‘L:‘.,‘}
ije S 3)

where

E, (u, d) is the second-order surface energy function

i is the secord order smoothness parameter
o is the energy associated with surface discontinuities
. and Uy, are the second-order spatial derivatives at points {i, j}

L; j 1s the discontinuity indicator.

Surface Energy Minimization. Reliable minimization of the energy function, £ (u, d) , requires
a complete search over all possible reconstructed ocean depths, U o for all points on the surface.
In most applications, and in particular bathymetric, such searches are intractable because of the
extremely large number of possible surfaces. Alternatively, if the locations of the discontinuities,
Li, j are fixed, the minimization can be posed as a common linear least-squares problem. In this

3. Other sccond-order energy functions arc also possible; for example, a reasonable function might account for both
first- and second-order smoothness, and/or rely on the derivative crossierms « and u .
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case, a least-squares solution to u; }-would be found for all possible collectives uf disconunuities,
and the discortinuity set providing the minimum-energy surface would be chosen. This may be a
plausible approach if the number of expected ocean floor discontinuities is small. The processing
requirements quickly grow unmanageable, however, because the number of feasible outlier con-
figurations grows combinatorially with the number of possible outliers.

Blake and Zisserman proposed the GNC as a practical solution for problems of this kind [4].
The primary contribution of the GNC algorithm is the unique method by which it carries out the
energy minimization process. Rather than minimize the energy function directly (e.g., through an
exhaustive search), the algorithm forms a bounded approximating function with special convexity
properties. Once the minimum of the approximating (convex) function is located, a more accurate
approximating function is created and the minimization process is repeated. The accuracy of the
energy-minimum estimate is retined as the approximating function approaches the true energy
function.

For notational convenience. the smoothness and discontinuity contributions of the energy
function are usually consolidated, forming the energy function

F=D+Z[g(uxx)+g(uyy)}, )
where D is the measurement adherence function, and g (1) contains both the smoothness and dis-

continuity functions. In the case of the second-order model, g (¢) is given by
=2 1 2
g (1) =u( —Li.j)z +aL‘.'j. (5)

Blake and Zisserman have shown {4] that the best-fit convex approximation to g(1)is

p.412 for (t.<q)
; 2
2P = a_c(,j‘f;{'_)m for (g< 1 <r)
2
o for ('r2r)
where
c* 2 a(?' N 1 ) o4 6

c = -—, r- = e . = e
D c H4 4 ’ll4

and ¢ is the second derivative about the depth sample. The function g )

takes any of three forms,
depending on the value of the argument. For small depth differences, the magnitude of ¢ is small
and the smoothness energy criteria, u*s%, applies. Large depth differences represent discontinui-

ties, and the discontinuity energy, o, is assessed. In both the small- and large-difference cases, the

8




approximating function is exact. At intermediate depth differences. a quadratic {and hence
convex) approximation is used.

The parameter p controls the energy function approximation. The algorithm locates the solu-
tion iteratively, beginning with p = 1, such that g( Vo= g* and the approximating energy func-
tion is globally convex. After a solution for g ) is located, p is decreased and a new (more accu-
rate) solution is found. As the algorithm proceeds, p is slowly decreased toward zero and = refined
estimate is calculated at each point. Note that at p = (), the approximating energy function is pre-

cise, and the true energy minimum is located. The algorithm’s operation is summanzed in Table 1.

Table 1. SECOND-ORDER GNC ALGORITHM SUMMARY

Initialize:
fori=1,..N;.j=1,.N
0 _
wp = d
Reconstruct:

forp=1,1/2, 14, ..
for n = I, ... N (iterations on the reconstructed image)
fori=1,..Njj=1..N;

n+1l

“i.j

=l (Gl = d )+ g7 ) 2P W)

where ufj and ul”, are the second derivatives with respect to depth in the x and y dimensions, re-
spectively, of the reconstructed seafloor surface, u, at iteration interval n; 4, j is the raw depth
sampic at position {i,j}; and ¥ is the adaptation gain constant.

Empirical Comparison of First- and Second-Order Models. Seafloor reconstruction results ob-
tained with the first- and second-order GNC algorithms are given in Figure 3. The test data set
was excerpted from a 1990 University of Rhode Island Hydrosweep cruise of the North Atlantic
near 64°latitude, 5° longitude. As shown in the three-dimensional plot of Figure 3a. the selected
data set contains a significant topographic feature. Results from the first-order GNC algorithm
(Eq. {3]) are shown in Figure 3b. Note that the first-order reconstructed surface has linear tears
following across the steeply sloped regions, causing the reconstructed surface to differ greatly
from the underlying data. True outliers in the steep regions are masked by these tears, thereby re-
ducing the outlier detection effectiveness.
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The second-order, or thin-plate reconstruction (Eq. {4]) results are shown in Figure 3c. Be-
cause the second-order model is a better match to this data set, the reconstructed surface is contin-
uous through steep regions, yet identifies breaks in the surface to accommodate outliers. Several
outliers are present, however, in the form of occasional spikes in the data.

2.1.2 RLP Algorithm improvements
The RLP algorithm operates by

1. Estimating autoregressive parameters for some window of data.

2. Predicting depth at a beam-ping bin based on the estimated parameters and some neighbor-
hood of surrounding bins.

3. Comparing the predicted depth to the measured depth at that bin and making some decision.

Rather than being arbitrary, the shape of the prediction neighborhood is governed by the math-
ematics of the parameter estimation procedure. To simplify this procedure, we followed standard,
image-processing procedurs and employed a nonsymmetric prediction neighborhood. Unfortu-
nately, this choice has unwanted side effects, including:

* Probability of outlier detection depends on the direction of filtering, whether from early
times to later times, or vice versa.

* Because of the one-sided prediction, the RLP tends to produce false alarms at transition
zones.

Improvements to the RLP algorithm were designed to overcome the directionality of the non-
symmetric-half-plane support region and to lower the false-alarm rate on steeply dipping regions.

Background on RLP Algorithm. The RLP algorithm characterizes outliers as samples of a non-
Gaussian random process. The tools of robust estimation theory allow us to detect these samples
without assuming a parametric form of the outlier probability density. The RLP algorithm oper-
ates adaptively by robustly estimating the parameters of an autoregressive (AR) ocean bottom
process within some small window, and then using these parameters to predict depths within the
same window. The estimation window steps across a few beams and pings at a time, as shown in
Figure 4. If a measured depth exceeds some threshold, it is replaced by its predicted value and the
estimation process repeats. Outliers are declared when the difference between the restored surface
and the origina’ surface exceeds some threshold. This approach offers several benefits:

* The ocean bottom is modeled accurately, even in the presence of large sensor errors.

* What is known (the ocean bottorr statistics) is exploited, and what is unknown (the outlier
statistics) is removed.
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FIGURE 4 MOVEMENT OF ESTIMATION WINDOW ACROSS DATA SET IN OVER-
LAPPING STEPS

* The process adapts to the local ocean bottom statistics without reliance on a global surtace
estimate.

* Ocean bottom discontinuities are modeled and not reported as outliers.

*» Allowance is made for random sampling errors (beam-ping format data).

Robust Bathymetric Error Detectlon. The RLP algorithm was adapted from an image restora-
tion algorithm reported by Kashyap and Eom [5]. In this technique, a robust M-estimator is used
to estimate the parameters of an autoregressive image model. These parameters are then used in a
“data cleaning” step, where outliers are removed. The AR parameters are again estimated and the
data cleaned, and so on, until no more outliers are found.

The Kashyap algorithm assumes a first-order, nonsymmetric half-plane (NSHP) image model.
This model is the two-dimensional equivalent of a causal model in time series analysis (Figure 5).
In the NSHP model, an intensity, y (i, j) , is computed as the weighted sum of the three “neigh-
bors” shown in Figure §, plus some random innovation. If 6 . 1s the weight given to the k'
neighbor of point (i, ), this relation may be written

VB =0 y(i=1,) +8,y(i~1,j-1) +0,y(,j=1) +v (i),

where v (i, /) is a zero-mean Gaussian random field with variance 03. In vector notation, this
would be written

y(,j) = 8'23i,)) +v(,j), ™
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where z (i, ) is a 3x1 vector of NSHP neighbor values surrounding point (4, j) . The image is
further assumed to be contaminated by some unknown outlier process, (i, j) , whose probability
distribution is unknown. Thus, the observed image, y, (i, /) , may be expressed as

Yo (isf) =820, 7) +v (i, /) +(i,)) .

Given this observation model, a robust M-estimator for the parameters 0 and the variance 0:‘; is
found by minimizing the nonlinear expression

(y, (i) =82, (4, /) )

e=§p( S

v

The data-cleaning procedure takes the process further by replacing outliers in each step with
the value predicted by the robustly estimated parameters . Upon convergence, the window is
shifted over a few rows or columns and the process repeated. In this way, the entire image is re-
stored, one window at a time.

RLP Modifications. Throughout development of the RLP algorithm, we have relied on a first-
order nonsymmetric half-plane image model, which has proven sufficiently flexible to model a
variety of ocean bottom processes. It also has the advantage of being recursive, so that missing
data points may be estimated as the filter progresses. The NSHP model also has several disadvan-
tages. It has strong directional preferences, and only detects errors on the leading edge of a group

|

0000
@0 0|0 @

°@

FIGURES NSHP MODEL: UNFILLED POINTS COMPQOSE THE
NEIGHBORHOQD OF THE CIRCLED POINT.
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of error points. This directionality problem may be solved through the use of noncausal error fil-
ters.

A more serious drawback of the NSHP model is that it does not reflect the nature of the multi-
beam bathymetry process. In other words, the elements of the vector z (i, j) in Eq. (7) do not cor-
respond to beams, pings, or any physical entity other than an arbitrary neighborhood of points.
This lack of correspondence makes impossible the incorporation of a priori information, such as
beam or ping confidence measures. The utility of the RLP has been improved by reformulating
the surface model to be oriented specifically to multibeam bathymetry. In this algorithm, which
we refer to as the vector robust linear prediction (VRLP) algorithm, beam data can be expressed

as a vector, Markov random process by replacing Eq. (2) with
N

p(t) = Y @p(t—i)+v(r)

i=1

where p () is alength n vector of measurements from a ping at time ¢, one component for each
beam. The parameters of this model are contained in ©,, an n x n matrix, and v (1) is a vector
random process with covariance matrix C. The estimated covariance matrix C for such a model
now conveys much more information than the covariance, &, of the scalar NSHP model used pre-
viously. For example, the diagonal of € contains estimates of the variance of individual beams. If
a single element along the diagonal grows much larger than the other elements, an operator can be
alerted to the presence of a bad beam.

Rather than directly copy the Kashyap algorithm, we have adopted a vector version of the ro-
bust filter-cleaner approach of Martin and Thomson [6]. This algorithm is identical to the
Kashyap approach with the exception that simple least-squares estimates (which we obtain by
solving vector version of the Yule-Walker equations [7]) of the parameters and covariance are
computed at each iteration rather than taking a nonlinear Gauss-Newton step. The data cleaning
proceeds as before, with certain modificatons for the vector quantities involved.

To improve false-alarm rates on steep slopes, we have further modified the algorithm to per-
form smoothing rather than filtering. In other words, two models, one forward and one backward,
are assumed, and a weighted sum of each is used. This is shown graphically in Figure 6. The
models may be written

and
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b
2('3‘ Lp(,+)+ﬁj’
i=1

where ﬁ]f and 1_31? are vector random processes with covariance matrices ¢’ and C?, respectively.
The complete VRLP algorithm is given in Table 2.

Table 2. VECTOR ROBUST LINEAR PREDICTION ALGORITHM

.Lk=0
2. Undl nochangein § oro,
do

2a Ugmg data within the estimation window, compute @/ ke @ d k. and
Ci»i=1,...,N , by solving the forward-backward, vector Yu]e Walker
equauons

2.b Perform data cleaning;:
For each ping in the estimation window,
do

2b' Eik+1 T 2 kpf 1)k+Cf

N r N =
o ab _ ab b L ~=1{ab ab 1
2.biii Pl = ZG)i’kgO_i)’k+Cb3‘j!Cb (—j.k" 21@‘ kpo 9. k),
i=1 L i= J
oA _ -1 | Nl R, 1ab
2biii p; = (Cp+Cp) (Crpy +Cp B i)
end
end
2¢k=k+1

RLP Results. A comparison of the RLP and VRLP algorithms is shown in Figure 7. Figure 7a
shows a raw data swath with a variety of errors. Figure 7b shows the results of applying the RLP
algorithm to these data. Note that several false alarms are found on the steeply sloping region, and
that some outliers are missed on the edges and in the vicinity of a bad beam. Figure 7c shows the
results of applying the VRLP algorithm. Note that the number of false alarms is reduced, and that
more outliers are detected on the edges and in the middle.
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FIGURE 6 BIDIRECTIONAL VRLP ALGORITHM

2.2 Task 2: Outlier Detection Software Implementation and Delivery

2.2.1 Background

The purpose of the clean program is to automatically analyze raw depth files produced by
bathymetric and hydrographic sensors, and tag the isolated outlier depth estimates in the data. The
application environment for clean is summarized in Figure 8, where clean represents the first step
in a four-step bathymetric chart production process. In the second step of Figure 8, the positional
information attached to the depth estimates is adjusted to account for navigational errors. The
third step calculates and assigns statistical information to the data, such as data reliability indica-
tors and expected errors (in position and/or depth). The fourth and final step combines the indi-
vidual swaths of depth estimates to form a fully populated, two-dimensional depth grid.

Clean can be applied either as a stand-alone prefilter of sensor data, or used in conjunction
with the NAVOCEANO swathedt contour display program to provide a semiautomated oceano-
graphic data quality analysis and editing environment. The auxiliary program control provides an
X-Windows interface to the clean processing parameters.

2.2.2 System Operation

A top-level system control and data flow diagram, drawn from the operator’s perspective, is

shown in Figure 9. Input to the system consists of raw sensor depth files in one of the following
formats:
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(a) Raw Data
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FIGURE 7 RESULTS OF RLP AND VRLP ALGORITHMS
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STEP 1 {clean, swathedt)

STEP 2 POSITION CORRECTION | NAVIGATIONAL

LOGS

DATA QUALITY

STEP 3 ASSESSMENT & TAGGING
STEP 4 GRIDDING
CHARTS
DATABASES

7781

FIGURE 8 APPLICATION ENVIRONMENT: BATHYMETRIC/
HYDROGRAPHIC CHART PRODUCTION

» Compressed SASS and Seabeam
* Uncompressed Seabeam
* Hydrosweep

* Generic multibeam format (GMF).

Clean optionally produces two types of output files:
» Filtered Time Anomaly File (FTAF)

« Edited sensor depth file.

The FTAF is an ASCII file containing the times and beam numbers of detected outliers. Other
software, including the swathed!t contouring program, makes use of the FTAF 1o graphically
highlight outliers. The edited sensor data file has identical format to that of the input file, except
that the automatically detected outlier depths have been marked.
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Clean is a baich program; once started, it does not require operator interaction. At the start of
execution, clean is assigned processing parameters that includ::

» Input file name (required)
» FTAF file name (optional; if omitted, no FTAF created)
» Range of pings and beams to process foptional; if omitted, all pings & beams processed)

* Outlier detection algorithm parameters (optional; default values used otherwise).

Processing continues until either the operator aborts the run (by explicitly killing the process
via an operating system command, e.g., the Unix kill commind), or until the specified range of
pings is completely processed.

The auxiliary program control, an X-windows interface, enables more convenient viewing and
ediung of the parameters than is possible through standard Unix command-line parameter
passing. In addition, control allows entire sets of parameters to be saved and recalled using oper-
ator-selected names. The parameter values selected in the control window are communicated to
clean via a parameter database file that is shared between the two programs. An example control
screen image 1s shown in Figure 10.

2.2.3 Computing Requirements

Clean was designed to operate on any Unix computing system, and to be readily portable (that
is, transferable with minimum effort) to other operating systems.Because clean is a computation-
ally intensive program, a computer with fast floating-point performance is recommended. (lean
does not require interactive or graphics support software. The auxiliary progra.n control, however,
requires a graphics display terminal with xeyboard and mouse, along with an X-Windows server
and window manager. The details of control’s appearance depend on the wirdow manager and the
local shareable libraries supporting X. Control was implemented under the MOTIF widget set.

Both clean and control are written in the ANSI/C language, and compile and operate under ei-
ther the System V (HPUX), BSD4.2, or BSD4.3 versions of the Unix operating system.

2.2.4 Current Status

Version v2.3 of the clean and control software and their corresponding documentation sets
were delivered to NAVOCEANO in June of 1992. On-site software training was provided to
NAVOCEANGQ personnel at that time. The clean/control software and User’s Guide were also de-
livered, at DMA’s request, to a NOAA facility.
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Items delivered under this task include the softwiure source code, functional system and sub-
system descriptions [8,9], and User’s Guide {10}. The final software release will be sent to DMA
at project completion, circa 1 May 93.

2.3 Task 3: Feaslibility Study

In this task, SRI conducted a study to identify data processing techniques already in use for
other scientific applications that could be cost-eftfectively adapted to oceanography. Wherever
possible, estimates were made for the additional required R&D, implementation tume/cos.t and
technical risk for adapting such techniques to bathymetric/hydrographic data processing prob-
lems. In the particular area of error reduction through sonar signal processing improvements, a
prototype algorithm was implemented and tested.

The techniques covered in the feasibility study izl roughly into two categories. High-level
data processing techniques, which are largely based on methods of computer vision and artificial
intelligence, were considered for the problems of bathymetric data fusion, seafloor classification/
provincing, and three-dimensional shape and object recognition. Lower-level processing tech-
niques, which are based on methods of statistics and mathematical optimization, were studied for
application to post facto survey navigation correction, sonar error reduction, and interferometric
sidescan sonar processing.

A complete report on our findings was given in “Oceanographic Data Processing Feasibility
Study” [1], which was delivered to DMA in February 1993. The following sections summarize
our findings for each of the application areas. Recommendations for additional work in these
areas are given in Section 3.

2.3.1 Ocean-Bottom Classification/Provincing

This portion of the study considered methods for automatically segregating the ocean floor
into regions that are similar in some regard. Typical provincing criteria include bottom
composition, roughness, slope, or some particular geological feawre. Even if humans are still
used to provide the final interpretation, an automatic or semiautomatic provincing capability
would be expected to save analysis time. For example, in geophysical studies, the data analysts’s
job would be greatly simplified if regions of similar topology were identified in advance by the
computer. Provincing may also be used to automatically select outlier detection parameters, and
recent findings by the DMA Data Integration Working Group (DIWG) indicate that provincing
will be required to delineate seafloor regions and automatically select appropriate gridding and
interpolation algorithms. Provincing capabilities of this type would aiso be useful to the ocean
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engineering community, where tasks such as cable routing could be simplified if bathymemic
provinces were automatically delineated and classified.

The bathymetric classification problem has similarities to problems that have already been
addressed in other tields. For example, computer vision techniques are currently used to perform
such tasks as characterizing topographies or assessing crop yields from digital terrain maps. In
manufacturing applications, computer vision techniques provide real-time a:sembly-line inspec-
tion and quality control. Such techniques are well understood, and could be transferred to oceano-
graphic applications in a relatively short time.

2.3.2 Three-Dimensional Shape Recognition

A general three-dimensional shape recognition capability is a prerequisite to several automatic
tasks, including macroscopic error detection (e.g., identifying biases in the sensor estimates), nav-

igational hazard detection, and recognition of topographic features.

As in the case of classification and provincing, a great deal of research has already been con-
ducted on terrestrial map interpretation, as well as on parts identification and fault detection in
manufacturing applications. Although a variety of algorithms have been developed to address the
three-dimensional shape recognition problem, they rely almost universally on the differential geo-
metric concepts of Gaussian and total curvature. Scale also plays an important role in the shape
recognition process, indicating that bathymetric shape analysis algorithms will be required to ex-
tract curvature features over scale.

2.3.3 Data Fusion

Data fusion is the process of combining information from multiple sensors to produce com-
posite data that are either more accurate or more reliable than what can be derived from any
sensor alone. In bathymetric applications, the candidate sensor types include single- and muiti-
beam sonars, sidescan sonars, and gravity and magnetic sensors. Fusion may take place at low or
high levels of data abstraction. For example, depth data from an overlapping set of sonar surveys
may be combined at the raw depth-estimate level. Techniques for combining these data are well-
known and relatively straightforward to implement; however, combining data from sensors that
measure very different phenomena (e.g., magnetic and depth data) is much more difficult. In most
cases, features or underlying interpretations must be extracted from each sensor’s data stream
prior to fusion.

An initial practical goal would be to develop a low-level fusion system that combines two or
more bathymetric surveys into a single map product. Such a system could be developed at
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relatively low cost, and with little technical risk. The deveiopment of a navigational correction
algorithm would be a prerequisite to this etfort. Additional research will be reguired, however,
before a high-level fusion system can be developed. In particular, knowledge representations must
be identified to support specific oceanographic fusion problems and sensor types.

2.3.4 Error Reduction Through Improved Sonar Signal Processing

The signal processing and bottom estimation algorithms currently used in bathymetric sonar
systems are subject to outlier errors under a number of common conditions. Sonar beam side-
lobes, external interferers, and poor bottom reflectivity can greatly affect system accuracy, leading
1o such well-known problems as “tunneling,” “omega” effects, phantom features, and isolated out-
liers. While some of these errors can be detected in postanalysis, many are insidious and are easily
missed by an analyst. And when such errors are detected, depth data in the affected region are un-

recoverable, and the area must be resurveyed or eliminated from the resulting data products.

de Moustier and Kleinrock [11] pointed out that the signal due to the acoustic return from the
seafloor is generally still present in the data, but a much stronger signal at an incorrect apparent
time-delay confuses the depth estimation algorithms. It is believed that sophisticated depth esti-
mation techniques could make sonar systems much more robust against such problems by com-
paring the shape and spatial spectra of the seafloor vs. those caused by various error effects, as
well as the amplitude characteristics of actual and error signals.

The problem of robust detection and estimation has already been faced in several other appli-
cation areas. In the field of robotics, surface reconstruction algorithms have been developeda to es-
timate visible surfaces from range measurements that are very similar to those produced by bathy-
metric sonars. Such approaches rely on a combination of surface shape and consistency
constraints to identify likely surface interpretations. The target tracking algorithms used in radar
systems address the robustness problem through use of a multiple hypothesis (MH) approach, in
which several candidate target tracks (or, in a bathymetric application, several candidate sea-
floors) are developed and evaluated in paraliel. The final selection is delayed until after sufficient
supporting data have been analyzed. The MH approach is particularly useful for applications in
which sensor errors are not always immediately obvious, such as in the cases of tunneling and
omega errors in a multibeam survey.

A prototype depth estimation procedure was developed and briefly tested under this study.
The prototype combines a multiple hypothesis procedure with a surface reconstruction algorithm
that was derived from the computer vision literature (e.g., Amini et al. [12,13]). Preliminary
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experimental results using synthesized depth data* have been encouraging, although additional
tests on collected sonar data will be required to thoroughly prove the concept.

2.3.5 Automated Navigational Correction

Prior to the introduction of the Global Positioning System (GPS), navigational errors were the
predominant source of uncertainty in bathymetric surveys. Unfortunately, most of the existing
bathymetric database was created in the pre-GPS era, and many of those surveys contain ship po-
sition errors of up to several kilometers. While most bathymetric map production facilities allow
navigational corrections, such procedures are manual and time-consuming. In addition, bathy-
metric data must sometimes be discarded when surveys overlap but do not precisely align, be-
cause there is no low-level fusion capability that acceunis for the navigation errors and the re-
sulting disagreement in depths. For these reasons, the bathymetrists interviewed under this effort
indicated great interest in an automauc, postsurvey navigational correction capability. A similar
capability for verifying (but not attempting to correct) the navigation of coastline surveys was also
requested by hydrographers.

A search of the open technical literature found that at least two prior researchers developed
post facto navigation correction techniques [15-17]. In both techniques, the seafloor topography is
used as an alignment feature at points where the survey track passes over itself or over an indepen-
dent (and possibly more accurate) survey. These approaches reduce the relative position errors
that occur over the period of the survey, and if the navigation errors are at least partially uncorre-
lated, the absolute position errors are reduced as well. More importantly, if two or more survey
points are precisely known (e.g., through GPS fixes, or when a survey track overlaps a separate,
GPS-navigated survey), the adjusted positional accuracy of the entire track can approach that of a
completely GPS-navigated survey.

Based on the results of previous research in this area, we conclude that a postsurvey naviga-
tion system is practical. However, before such a system can be used routinely at an oceanographic
map-production facility, several problem areas will have to be addressed, including: robustness to
sensor errors, especially those resulting in phantom topography (e.g., omega effects); multiple ap-
parent topographic feature alignments, a situation that is common in areas with few significant
features; and numeric instabilities associated with solving problems of this size.

4. The sonar data necessary for these experiments were created by combining actual seafloor depth measurements
with a sonar signal synthesizer. The sonar signal gencrator was taken from a model given by Okino and Higashi [14).

25




2.3.6 Interferometric Sidescan Sonar Data Processing

Interferometric sidescan sonar swath bathymetry has the advantages of low-cost, simple de-
sign, and wide swaths that make it an auractive alternative to multibeam bathymetry systems.
However, the simplicity of the ohysical system is offset by the complexity of the processing re-
quired to extract accurate bathymetry from reflected acoustic signals. If interferometric sonar is to
produce a reliable bathymetric produ~ that competes favorably with multibeam data. large im-
provements in the processing stream must occur. These improvements must be implemented at all
stages of the production process, from raw data processing to fusion with other bathymetric data
sources. In addition to the problems shared with multibeam systems that we have addressed else-
where in this report, we have identified for future research several areas that are unique to interfer-
ometric systems, as described below.

Optimal Phase Recovery. Bathymetry is recovered from phase in an interferometric system.
Unfortunately, phase is a random process influenced by multiple factors. Some attempt should be
made to apply optimal estimation techniques to the phase recovery problem.

Standard Processing Sequence. Because interferometric systems are just now emerging from
the research stage, no production processing sequence has yet been developed. A standard ap-
proach, drawn from lessons learned in the multibeam bathymetry field, should be developed.

Beam Sharpening. Sidescan sonar is subject to the blurring effects of beam patterns. These ef-
fects can be reduced in radiometric images by deconvolution. Studies should be conducted to de-
termine if similar techniques can be applied to bathymetric data.

SVP Error Reduction. Interferometric bathymerry is very sensitive to changes in sound ve-
locity profile (SVP), requiring frequent recalibration on flat bottom. Techniques that reduce the
frequency of recalibration or ameliorate the effects of rapidly changing conditions would greatly
improve the quality of data.
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3 CONCLUSIONS

The outlier detection software was successfully integrated with the bathymetric production
system at NAVOCEANO, where it is now used routinely. The outlier detection algonthm im-
provements recommended under our earlier program were also implemented, and a preliminary
evaluation was carried out. Based on these tests, the primary goal of improving outlier detection
performance near regions of significant topographic features appears to have been met. An exten-
sive performance evaluation using human experts as a control, however, was not part of this pro-
gram.

The feasibility studies carried out under this effort indicate that a significant body of ideas and
algorithms is available from existing computer vision and surveillance data analysis systems.
Problems such as data fusion, data alignment, and object/feature recognition have already been
successfully addressed for these applications. Additional research and a significant amount of en-
gineering will be required before advanced techniques of this kind cau be incorporated into ocean-
ographic data production systems.

To gain perspective in the feasibility study on the interactions and prerequisites for oceano-
graphic data processing, a generic data processing block diagram was developed around the re-
quirements put forth by the DHI program. As shown in Figure 11, the overall system comprises
three levels: Sonar Processing, which includes depth estimation and shipboard navigation; Data
Conditioning and Assessmenr, which performs data editing (outlier removal, etc.), renavigation,
and quality assessment; and Product Generation, which creates the finished data products; i.e.,
high-level data fusion to support geophysical sciences, provincing/classification for ocean engi-
neering and geomorphological studies, shape recognition to create feature databases and locate
potential hazards to navigation, and low-level fusion and gridding to create bathymetric/hydro-
graphic map products. Our investigations found that few of the processing functions outlined in
Figure 11 currently exist; of those shown, only the data editing and data gridding blocks have
been developed and standardized® for the oceanographic community.

Table 3 summarizes the processing technologies that will be required to support the DHI data
production capabilities. Note that each of the desired capabilities will require the support of sev-
eral processing technologies, and conversely (and perhaps more impontantly), each processing
technology will also be useful to several application areas. We also believe that the development
of processing technologies will be expensive, and care must be taken to reduce the redundancy of
future R&D efforts that involve them.

5. A standardization effort for gridding algorithms is currently under way.
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For these reasons, we believe that the most cost-effective approach to achieving the DHI goals
is to identify and develop critical core processing technologies, and then to integrate these into
each of the application areas. Each core technology should be developed under a single R&D pro-
gram; a set of programs could then address each of the specific application areas. For example, a
stugle shape-recognition R&D program could develop the tools necessary for macroscopic error
detection and topographic classification. Similarly, a single navigational correction capability

could be developed to support the several forms of data fusion, as well as to achieve more precise
surveys.

A final point regards the benefits of involving the end-users in the system design process. Es-
pecially as DMA begins to focus on more sophisticated processing technology, the required ex-
pertise in the diverse areas of oceanography and processing are unlikely to be represented in any
one individual. To counter this problem, the algorithm/software experts must work closely with
the oceanographers during the design stages. Furthermore, a prototye-and-iterate approach is rec-
ommended. In such an approach, a low-cost software prototype is delivered to user facilities prior
to the final software product design, evaluated by experts, and then design modifications are
made. Although adding slightly to the development cost, this approach insures that the software
addresses the user community’s needs and, in the long run, better meets the intended goal of im-
proved data analysis efficiency.
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